Wavefront-optimized laser in situ keratomileusis with the Allegretto Wave Eye-Q excimer laser and the FEMTO LDV Crystal Line femtosecond laser: 6 month visual and refractive results

Mohammed Ziaei a,*, Ali A. Mearza b, c, David Allamby c

a Moorfields Eye Hospital, 162 City Road, London EC1V 2PD, United Kingdom
b Imperial College Healthcare NHS Trust, Western Eye Hospital, Marylebone Road, London NW1 9QQ, United Kingdom
c Focus Clinic, 22 Wimpole Street, London W1G 6Q, United Kingdom

ARTICLE INFO

Article history:
Received 12 November 2014
Received in revised form 5 February 2015
Accepted 6 February 2015

Keywords:
LASIK
Visual acuity
Refractive error
Femtosecond laser
Ziemer
WaveLight

ABSTRACT

Purpose: To present the first reported series of patients undergoing myopic LASIK with the FEMTO LDV Crystal Line femtosecond laser and the WaveLight Allegretto Eye-Q excimer laser. We report the uncorrected and corrected distance visual acuity (UDVA and CDVA), refractive predictability, efficacy and safety of laser in situ keratomileusis (LASIK) performed with the above laser platforms.

Methods: This prospective interventional case series study evaluated consecutive eyes with low to moderate myopic astigmatism that underwent LASIK with the FEMTO LDV Crystal Line femtosecond laser and the WaveLight Allegretto Eye-Q 400 Hz excimer laser. Visual and refractive changes as well as complications were evaluated after wavefront-optimized laser treatment.

Results: Four hundred and forty four patients (887 eyes) reached the 6-month time gate. Mean age at time of procedure was 31 years (range: 20–59). Mean pre-op spherical-equivalent (SE) was −3.44 diopters (D) ± 1.34 D (range: −0.50 to −7.00) whilst the postoperative spherical equivalent decreased to −0.08 ± 0.31 D (range: −2.25 to 1.00). At 6-month follow up, 96.9% of patients had monocular uncorrected distance visual acuity of 20/20 or better with 95.2% of patients within ±0.5 D of intended refractive outcome. All patients achieved 20/20 binocular distance uncorrected visual acuity. No significant intra-operative or postoperative complications were encountered during the 6-month follow-up period.

Conclusions: The combination of the above laser platforms provides safe, effective and predictable results in correcting compound myopic astigmatism with excellent visual outcomes.

© 2015 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Laser in situ keratomileusis (LASIK) is currently the most common refractive surgical procedure performed for the correction of myopia, hyperopia, and astigmatism [1]. The advantages of LASIK include rapid postoperative improvement of visual acuity, negligible postoperative discomfort, and the possibility of further enhancement [1,2]. The effectiveness, safety, and stability of LASIK for the correction of refractive errors have been well documented, with advancements in technology further improving clinical outcomes over the past decade [3].

The introduction of femtosecond laser flap creation has significantly reduced flap-related complications whilst the next generation of excimer laser machines have contributed to further enhanced refractive results of LASIK [4]. As new lasers emerge in the market, it is important to assess and compare their results with existing reports of clinical outcomes in the peer reviewed literature.

The aim of the current study was to evaluate the visual and refractive outcomes of LASIK for the correction of low to moderate myopic astigmatism using the FEMTO LDV Crystal Line femtosecond laser (Ziemer Ophthalmic Systems, Switzerland) and the WaveLight Allegretto Eye-Q 400 Hz (Alcon Laboratories, Inc., Fort Worth, TX). To the best of our knowledge, this is the first reported series of patients undergoing myopic LASIK with the above mentioned laser platforms.

1.1. Patients and methods

This prospective study included consecutive eyes with low to moderate amounts of myopic astigmatism that had LASIK. All patients provided written informed consent in accordance with the tenets of the Declaration of Helsinki.

http://dx.doi.org/10.1016/j.clae.2015.02.004
1367-0484/© 2015 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

Please cite this article in press as: Ziaei M, et al. Wavefront-optimized laser in situ keratomileusis with the Allegretto Wave Eye-Q excimer laser and the FEMTO LDV Crystal Line femtosecond laser: 6 month visual and refractive results. Contact Lens Anterior Eye (2015), http://dx.doi.org/10.1016/j.clae.2015.02.004
Inclusion criteria for the study were low to moderate myopia (−0.50 to −6.00 D sphere and 0 to −3.50 D cylinder) and age between 20 and 59 years. Exclusion criteria were topographic corneal irregularity consistent with any degree of keratoconus, estimated residual stromal thickness of less than 300 µm after laser ablation, unstable refraction, nonrealistic expectations, history of previous refractive surgery, previous intraocular surgery or a history of ocular pathology. Patients discontinued soft contact lens wear at least 1 week prior and rigid gas-permeable contact lenses at least 1 month prior to the preoperative examination.

1.2. Preoperative examination

The preoperative ophthalmologic examination included uncorrected (UDVA) and corrected (CDVA) distance visual acuities, manifest refraction, slit lamp biomicroscopy, Goldmann applanation tonometry, corneal topography (Pentacam, Oculus, Optikergeräte, GmbH, Germany), ocular wavefront aberrometry (OPD scanner, NIDEK, Gamagori, Japan) and fundoscopy.

1.3. Surgical technique

All surgeries were performed by either A.M. or D.A. Two drops of proxymetacaine were administered immediately prior to surgery. Initially a 110 µm flap with a superior hinge and a 9.0 mm or 9.5 mm diameter (depending on pre-op K readings) was created using the FEMTO LDV femtosecond laser. Thereafter the flap was elevated and stromal ablation was performed with the Allegretto Wave 400 Hz excimer laser, preserving the flap edges and hinge. All eyes received wavefront-optimized treatment and emmetropia was targeted making nomogram adjustments as per the manufacturer recommendations.

After excimer ablation, the flap was replaced and the interface thoroughly irrigated to eliminate any residual epithelial cells, meibomian gland material, and debris. Postoperatively, Predforte (Allergan, Irvine, USA) was used 2 hourly for the first 2 days, then four times a day for a further 5 days. In addition, Ofloxacin 0.3% (Allergan, Irvine, USA) was used four times a day for the first week and Celluvics 1.0% (Allergan, Irvine, USA) was used 2 hourly for the first week, then as required thereafter.

1.4. Postoperative follow-up

Patients were seen at day 1, week 1, month 1, month 3 and month 6 post-operatively. Outcome measures were uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), refractive error and proximity to target refraction at the 6-month time gate. The efficacy index was calculated as the ratio between mean postoperative UDVA and mean preoperative CDVA whilst the safety index was calculated as the ratio between mean postoperative CDVA and mean preoperative CDVA. Complications and loss of CDVA were also recorded.

1.5. Statistical analysis

Statistical analysis was performed with the SPSS for Windows software (version 15.0, SPSS, Inc., Chicago). Snellen visual acuity was transformed into logMAR units for statistical analysis. The Student t test for paired data was used for comparison between the parametric preoperative and postoperative data. Statistical significance was considered at P < 0.05.

2. Results

The study included 887 consecutive eyes of 444 patients. The mean age of patients at the time of procedure was 31 years

![Fig. 1. Preoperative CDVA versus postoperative UDVA at 6 months (CDVA: corrected distance visual acuity; UDVA: uncorrected distance visual acuity).](image1)

![Fig. 2. Postoperative binocular UDVA (UDVA = uncorrected distance visual acuity).](image2)

(Fig. 1). The preoperative and postoperative refractive outcomes are demonstrated in Table 1. The mean preoperative spherical equivalent (SE) decreased significantly 6 months postoperatively (P < 0.01, paired t test). At the 6-month follow-up visit, 1.2% of patients who had not achieved 20/20 UDVA underwent monocular LASIK enhancement. All patients undergoing enhancement achieved 20/20 or better UDVA after 3 months of retreatment.

2.1. Efficacy

All eyes had 20/50 or worse UDVA preoperatively. At the 6-month follow-up visit, the UDVA was 20/20 or better in 860 eyes (96.9%) and 20/32 or better 883 eyes (99.5%) (Fig. 2). All patients achieved 20/20 or better binocularly (100%). The efficacy index (ratio of mean postoperative UDVA to mean preoperative CDVA) was 1.13.

2.2. Safety

At the 6-month follow-up visit, 505 eyes (56.9%) had no change in CDVA, 319 eyes (35.9%) gained one line or more whilst 54 eyes (6.0%) lost one line (Fig. 3). The safety index (ratio of mean postoperative CDVA to mean preoperative CDVA) was 1.08.

Please cite this article in press as: Ziaei M, et al. Wavefront-optimized laser in situ keratomileusis with the Allegretto Wave Eye-Q excimer laser and the FEMTO LDV Crystal Line femtosecond laser: 6 month visual and refractive results. Contact Lens Anterior Eye (2015), http://dx.doi.org/10.1016/j.clae.2015.02.004
In the 54 eyes (6.0%) that lost one line of CDVA, 34 eyes (3.8%) dropped from 20/12.5 pre-operatively to 20/16 post-operatively and 20 eyes (2.2%) dropped from 20/16 preoperatively to 20/20 postoperatively.

2.3. Stability

Fig. 4 shows the change in the mean SE refraction preoperatively and at 1, 3 and 6 months after LASIK. There was a general tendency to form a stable plateau over time.

2.4. Predictability

The SE refractive outcome was within ±0.50 D in 860 eyes (95.2%) whilst all eyes were within ±1.00 D at 6-month follow-up (Fig. 5). Fig. 6 demonstrates the attempted versus the achieved SE 6 months after LASIK.

2.5. Defocus equivalent

The defocus equivalent can be used to eliminate the inequity between eyes that had similar SE refractions but varying degrees of astigmatism. At 6 months postoperatively, 860 eyes (96.9%) had a defocus equivalent refraction of less than 1.00 D and 780 eyes (87.9%) had a defocus equivalent refraction of 0.50 D (Fig. 7).

2.6. Complications

No serious intra-operative or postoperative complications occurred. However 1.2% of patients underwent retreatment to correct residual refractive error.

3. Discussion

Our study is the first of its kind to report on the visual outcomes of sphero-cylindrical LASIK correction using the combination of the FEMTO LDV Crystal Line femtosecond laser and the WaveLight Allegretto Eye-Q excimer laser (Table 2).

The FEMTO LDV laser provides reproducible corneal flap creation utilizing acute side-cut angles [5], within 3–9 μm of intended thickness [6,7] whilst possessing the ability to cut through corneal opacities [8]. This 1040 nm laser has also been shown to create a predictable and uniform flap with an interface profile which is comparable to other femtosecond platforms [6,9]. This laser platform

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Preoperative Mean ± SD</th>
<th>Range</th>
<th>Postoperative Mean ± SD</th>
<th>Range</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere (D)</td>
<td>-3.10 ± 1.36</td>
<td>-6.00 to -0.50</td>
<td>0.01 ± 0.12</td>
<td>-2.00 to 1.25</td>
<td><0.01</td>
</tr>
<tr>
<td>Cylinder (D)</td>
<td>-0.70 ± 0.68</td>
<td>-3.50 to 0.00</td>
<td>-0.20 ± 0.26</td>
<td>-1.50 to 0.00</td>
<td><0.01</td>
</tr>
<tr>
<td>SE (D)</td>
<td>-3.44 ± 1.34</td>
<td>-7.00 to -0.50</td>
<td>-0.08 ± 0.31</td>
<td>-2.25 to 1.00</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Fig. 3. Lines of CDVA gained or lost over time (CDVA=corrected distance visual acuity).

Fig. 4. Stability of the achieved SE over time (central dark line). The dashed grey lines indicate ±1 SD of the distribution of the individual values.

Fig. 5. Postoperative spherical equivalent. The bars relate to the percentage of patients who achieved the SE indicated in the x-axis at the 6 months time gate.
has also been shown to create flaps without significant adverse effects on the corneal endothelial morphology [10] and has been associated with low levels of postoperative deep lamellar keratitis (DLK) [11]. The FEMTO LDV however appears to induce a higher level of rise in the intraocular pressure during flap creation when compared to other laser platforms [12].

The WaveLight Allegretto Wave laser Eye-Q uses flying spot technology with a 0.68 mm Gaussian beam and 0.95 mm spot diameter, with a frequency rate of 400 Hz and is capable of performing wavefront-optimized, wavefront-guided and topography guided treatments [13]. The WaveLight platform can be used to treat a large optical zone and the shorter treatment time of the WaveLight Allegretto Wave system (2 s for each diopter of treatment for myopia at an optical zone of 6.5 mm) has been proposed to provide greater refractive predictability, reduced residual astigmatism and better postoperative unaided visual acuity in myopic sphere-cylindrical eyes when compared to other platforms such as the VISX® Star S4 and LADARVision 4000 lasers [14,15]. Other studies have shown that outcomes of treating sphere-cylindrical errors with the WaveLight Allegretto Wave provides outcomes similar to the SCHWIND ESIRIS®, Technolas planoscan, or NIDEK® excimer lasers [16–18].

The visual outcomes in our cohort were excellent, with a significant improvement in UDVA and maintenance of CDVA. The mean preoperative SE decreased from -3.44 ± 1.34 D preoperatively to -0.08 ± 0.31 D postoperatively and remained stable 6 months after

![Figure 6](image1.png)

Fig. 6. Attempted versus achieved SE 6 months postoperatively (*solid line*). The dashed lines indicate the ±1.00 D range.

![Figure 7](image2.png)

Fig. 7. Preoperative versus 6 months postoperative defocus equivalent bar graph.

Table 2

Technical features of the FEMTO LDV laser as compared to the Intralase laser [6,19].

<table>
<thead>
<tr>
<th>Laser</th>
<th>Intralase FS (Advanced Medical Optics, Inc., Irvine, CA)</th>
<th>FEMTO LDV (Ziemer Group AG, Port, Switzerland)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept</td>
<td>Amplifier</td>
<td>Oscillator</td>
</tr>
<tr>
<td>Wavelenght</td>
<td>~ 1053 nm</td>
<td>~ 1040 nm</td>
</tr>
<tr>
<td>Pulse width</td>
<td>>500 fs</td>
<td>~ 250 fs</td>
</tr>
<tr>
<td>Spot size</td>
<td><1 μm</td>
<td><1 μm</td>
</tr>
<tr>
<td>Repetition rate</td>
<td>60–150 kHz</td>
<td><5 MHz</td>
</tr>
<tr>
<td>Pulse energy</td>
<td>$\sim 0.8–1.0$ mJ</td>
<td>20–100 nJ</td>
</tr>
<tr>
<td>Operation speed (9.5 mm)</td>
<td>31 s</td>
<td>38 s</td>
</tr>
<tr>
<td>Surface quality</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Cutting flexibility</td>
<td>Very high</td>
<td>Limited</td>
</tr>
<tr>
<td>Size/mobility</td>
<td>Fixed, 120 cm x 125 cm</td>
<td>Mobile, 70 cm x 95 cm</td>
</tr>
<tr>
<td>Clinical experience</td>
<td>>1 million eyes</td>
<td>unknown</td>
</tr>
</tbody>
</table>

Please cite this article in press as: Ziaei M, et al. Wavefront-optimized laser in situ keratomileusis with the Allegretto Wave Eye-Q excimer laser and the FEMTO LDV Crystal Line femtosecond laser: 6 month visual and refractive results. Contact Lens Anterior Eye (2015), http://dx.doi.org/10.1016/j.clae.2015.02.004
results cohort Conflict indeed 95.2% satisfaction ing After forms. period, operative which limitation to other methods: excellent stability and predictability after wavefront-optimized LASIK.[20–23]. In our study, there were no significant intraoperative or sight threatening postoperative complications during the follow-up period, which confirms the short-term safety of LASIK with the evaluated laser platforms. Our results are favourable when compare to those reported by Pietilä et al.[24], who reported a 3.5% minor and 0% major intraoperative complication rate in 342 patients undergoing LASIK using the FEMTO LDV and Allegretto Wave 150 Hz excimer laser (WaveLight AG) laser platforms. After 1 month of follow-up the group reported a loss of two Snellen lines of CDVA in 0.3% of eyes whereas none of our patient cohort lost more than one line of CDVA.

Limitation of our study is the lack of visual quality, patient satisfaction and aberrometric evaluation. Further studies evaluating these parameters would be needed to fully assess the function of the above mentioned laser platforms.

Financial disclosure

No author has a financial or proprietary interest in any material or method mentioned.

Conflict of interest

The authors declare that there are no conflicts of interest.

References
